84 research outputs found

    Nominal Unification from a Higher-Order Perspective

    Full text link
    Nominal Logic is a version of first-order logic with equality, name-binding, renaming via name-swapping and freshness of names. Contrarily to higher-order logic, bindable names, called atoms, and instantiable variables are considered as distinct entities. Moreover, atoms are capturable by instantiations, breaking a fundamental principle of lambda-calculus. Despite these differences, nominal unification can be seen from a higher-order perspective. From this view, we show that nominal unification can be reduced to a particular fragment of higher-order unification problems: Higher-Order Pattern Unification. This reduction proves that nominal unification can be decided in quadratic deterministic time, using the linear algorithm for Higher-Order Pattern Unification. We also prove that the translation preserves most generality of unifiers

    On the complexity of bounded second-order unification and stratified context unification

    Get PDF
    Bounded Second-Order Unification is a decidable variant of undecidable Second-Order Unification. Stratified Context Unification is a decidable restriction of Context Unification, whose decidability is a long-standing open problem. This paper is a join of two separate previous, preliminary papers on NP-completeness of Bounded Second-Order Unification and Stratified Context Unification. It clarifies some omissions in these papers, joins the algorithmic parts that construct a minimal solution, and gives a clear account of a method of using singleton tree grammars for compression that may have potential usage for other algorithmic questions in related areas. © The Author 2010. Published by Oxford University Press. All rights reserved.This research has been partially supported by the research projects Mulog-2 (TIN2007-68005-C04-01) and SuRoS TIN2008-04547) funded by the CICyTPeer Reviewe

    The Complexity of 3-Valued Lukasiewicz Rules

    Get PDF
    It is known that determining the satisfiability of n-valued Łukasiewicz rules is NP-complete for n ≥ 4, as well as that it can be solved in time linear in the length of the formula in the Boolean case (when n = 2). However, the complexity for n = 3 is an open problem. In this paper we formally prove that the satisfiability problem for 3-valued Łukasiewicz rules is NP-complete. Moreover, we also prove that when the consequent of the rule has at most one element, the problem is polynomially solvable. © Springer International Publishing Switzerland 2015.Research partially supported by the Generalitat de Catalunya grant AGAUR 2014-SGR-118, and the Ministerio de Economía y Competividad projects AT CONSOLIDER CSD2007-0022, INGENIO 2010, CO-PRIVACY TIN2011-27076-C03-03, EDETRI TIN2012-39348-C02-01 and HeLo TIN2012-33042. The second author was supported by Mobility Grant PRX14/00195 of the Ministerio de Educación, Cultura y DeportePeer reviewe

    A Variant of Higher-Order Anti-Unification

    Get PDF
    We present a rule-based Huet's style anti-unification algorithm for simply-typed lambda-terms in η-long -normal form, which computes a least general higher-order pattern generalization. For a pair of arbitrary terms of the same type, such a generalization always exists and is unique modulo α-equivalence and variable renaming. The algorithm computes it in cubic time within linear space. It has been implemented and the code is freely available. © Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret; licensed under Creative Commons License CC-BY 24th International Conference on Rewriting Techniques and Applications (RTA'13).This research has been partially supported by the projects HeLo (TIN2012-33042) and TASSAT (TIN2010-20967-C04-01), by the Austrian Science Fund (FWF) with the project SToUT (P 24087-N18) and by the Generalitat de Catalunya with the grant AGAUR 2009-SGR-1434.Peer Reviewe

    Parallelism and tree regular constraints

    Get PDF
    Parallelism constraints are logical descriptions of trees. Parallelism constraints subsume dominance constraints and are equal in expressive power to context unification. Parallelism constraints belong to the constraint language for lambda structures (CLLS) which serves for modeling natural language semantics. In this paper, we investigate the extension of parallelism constraints by tree regular constraints. This canonical extension is subsumed by the monadic second-order logic over parallelism constraints. We analyze the precise expressiveness of this extension on basis of a new relationship between tree automata and logic. Our result is relevant for classifying different extensions of parallelism constraints, as in CLLS. Finally, we prove that parallelism constraints and context unification remain equivalent when extended with tree regular constraints

    Higher-Order Pattern Anti-Unification in Linear Time

    Get PDF
    We present a rule-based Huet’s style anti-unification algorithm for simply typed lambda-terms, which computes a least general higher-order pattern generalization. For a pair of arbitrary terms of the same type, such a generalization always exists and is unique modulo α-equivalence and variable renaming. With a minor modification, the algorithm works for untyped lambda-terms as well. The time complexity of both algorithms is linear.This research has been partially supported by the Austrian Science Fund (FWF) project SToUT (P 24087-N18), the Upper Austrian Government strategic program “Innovatives OÖ 2010plus”, the MINECO projects RASO (TIN2015-71799-C2-1-P) and HeLo (TIN2012-33042), the MINECO/FEDER UE project LoCoS (TIN2015-66293-R) and the UdG project MPCUdG2016/055.Peer Reviewe

    Automatic Proving of Fuzzy Formulae with Fuzzy Logic Programming and SMT

    Get PDF
    In this paper we deal with propositional fuzzy formulae containing severalpropositional symbols linked with connectives defined in a lattice of truth degrees more complex than Bool. We firstly recall an SMT (Satisfiability Modulo Theories) based method for automatically proving theorems in relevant infinitely valued (including Łukasiewicz and G¨odel) logics. Next, instead of focusing on satisfiability (i.e., proving the existence of at least one model) or unsatisfiability, our interest moves to the problem of finding the whole set of models (with a finite domain) for a given fuzzy formula. We propose an alternative method based on fuzzy logic programming where the formula is conceived as a goal whose derivation tree contains on its leaves all the models of the original formula, by exhaustively interpreting each propositional symbol in all the possible forms according the whole setof values collected on the underlying lattice of truth-degrees

    Exploring lifted planning encodings in Essence Prime

    Get PDF
    This work is supported by UK EPSRC EP/P015638/1 and EP/V027182/1, by the MICINN/FEDER, UE (RTI2018-095609-B-I00), by the French Agence Nationale de la Recherche, reference ANR-19-CHIA-0013-01, and by Archimedes institute, Aix-Marseille University.State-space planning is the de-facto search method of the automated planning community. Planning problems are typically expressed in the Planning Domain Definition Language (PDDL), where action and variable templates describe the sets of actions and variables that occur in the problem. Typically, a planner begins by generating the full set of instantiations of these templates, which in turn are used to derive useful heuristics that guide the search. Thanks to this success, there has been limited research in other directions. We explore a different approach, keeping the compact representation by directly reformulating the problem in PDDL into ESSENCE PRIME, a Constraint Programming language with support for distinct solving technologies including SAT and SMT. In particular, we explore two different encodings from PDDL to ESSENCE PRIME, how they represent action parameters, and their performance. The encodings are able to maintain the compactness of the PDDL representation, and while they differ slightly, they perform quite differently on various instances from the International Planning Competition.Publisher PD

    Term-Graph Anti-Unification

    Get PDF
    We study anti-unification for possibly cyclic, unranked term-graphs and develop an algorithm, which computes a minimal complete set of generalizations for them. For bisimilar graphs the algorithm computes the join in the lattice generated by a functional bisimulation. These results generalize anti-unification for ranked and unranked terms to the corresponding term-graphs, and solve also anti-unification problems for rational terms and dags. Our results open a way to widen anti-unification based code clone detection techniques from a tree representation to a graph representation of the code
    corecore